463

Metathetical Reactions of Organotin Compounds; their Use in Amination

By T. A. GEORGE and M. F. LAPPERT

(The Chemical Laboratory, University of Sussex, Brighton)

WE have previously shown that organotin-nitrogen compounds, such as Me₃Sn·NMe₂, are compounds of exceptional reactivity (comparable to Grignard reagents¹), as exemplified by their reactions with (i) unsaturated substrates,² and (ii) protic species.³

We now report an extensive range of metathetical reactions (iii), which substantially increases their synthetic potential.

$\mathrm{R_{3}Sn}{\cdot}\mathrm{NMe_{2}} + \mathrm{X-A} \rightarrow \mathrm{R_{3}Sn}{\cdot}\mathrm{X} + \mathrm{Me_{2}NA}$

A selection of some reactions of $Me_3Sn\cdot NMe_2$, which follow this pattern, is shown in the Table; all the products have been characterised. A typical procedure was as follows. Boron trifluoridediethyl ether complex (1.46 g.) in diethyl ether (10 ml.) was added slowly to dimethylaminotrimethylstannane (6.24 g.) in the same solvent (10 ml.) at 20°. The reaction was violent and Me_3SnF (4.70 g.) was precipitated; the filtrate yielded $B(NMe_2)_3$ (1.32 g.).

The amination reactions owe their facility to the high donor strength of $R_3Sn \cdot NMe_2$, the weak and polar Sn-N bond, and the large values for the heats of formation of organotin products such as Me_3SnF . On the same basis, we have used $Me_3Sn \cdot PPh_2$ to prepare $As(PPh_2)_3$ (75%) and $Ph_2B \cdot PPh_2$ (75%), from AsF_3 and $Ph_2B \cdot SBu^n$, respectively. It is probable, therefore, that organotin compounds of general formula R_3SnY may frequently serve as intermediates for transfer of a moiety Y via Sn to another electrophilic site.

Related reactions, using Me₃SiY, have been widely investigated.⁴ However, the tin compounds are several orders of magnitude more reactive. For example, $Me_3Si \cdot NMe_2$ does not react with CFCl=CF₂, Me₃SnCl, or BF₃·OEt₂ (except to form

the complex $BF_3 \cdot Me_3SiNMe_2$), whilst it may itself be readily obtained from Me₃SiCl and Me₃Sn·NMe₂.

Reagent	Product	(Yield %)	Reagent	Product	(Yield %)
⅓ BF ₃ ∙OEt₂	$\frac{1}{3}\mathrm{B(NMe_2)}_3$	(92)	(OC) ₅ MnBr	(OC) ₅ Mn·NMe ₂ *	(78)
$CFCl = CF_2$	$CFCl = C(F)NMe_2*$	(69)	$(Et_{3}Al)_{2}$	$(Et_2Al \cdot NMe_2)_2$	(50)
C_6F_6	$C_6F_5NMe_2^{\dagger}$	(45)	Bu ⁿ ₃ B	$\operatorname{Bu_2^nB\cdot NMe_2}$	(86)
$HN(CF_8)_2$	CF ₃ ·NH·CF ₂ NMe ₂ *	(92)‡	Ph₃B	$Ph_2B \cdot NMe_2$	(59)
[‡] 3PF _β	$\frac{1}{3}$ P(NMe ₂) ₃	(~69)	MeCO ₂ Et	MeCO·NMe ₂	(65)
⅓AsF₃	$\frac{1}{3}$ As(NMe ₂) ₃	(42)	$\frac{1}{2}CH_2(CO_2Et)_2$	$\frac{1}{2}$ CH ₂ (CO·NMe ₂) ₂	(79)
] SbF ₈	$\frac{1}{3}$ Sb(NMe ₂) ₃	(60)	$MeCOCH_2CO_2Et$	MeCO·CH ₂ ·CO·NMe ₂ *	(82)
‡ TiF₄ BCl₃	‡Ti(NMe₂)₄ Me₂N·BCl₂	(75) (81)	$(EtO_2C)_2C = C(CO_2Et)_2$	$(EtO_2C)_2C = C CO_2Et^* CO \cdot NMe_2$	(95)
Me _s SiCl	Me ₃ Si·NMe ₂	(95)	$\frac{1}{4}(EtO_2C)_2C = C(CO_2Et)_2$	$\frac{1}{4}(Me_2N\cdot OC)_2C = C(CO\cdot NMe_2)_2*$	(96)
Cl ₂	CINMe ₂	(88)	Ph ₂ B·OMe	$Ph_2B \cdot NMe_2$	(97)
			¹ / ₃ B(OMe) ³	$\frac{1}{3}$ B(NMe ₂) ₃	(99)
			$\frac{1}{2}$ (MeCO) ₂ O	$MeCO\cdot NMe_2$	(84)

* New compound

† Only in this instance was gentle reflux required ‡ Calculated from yield of Me₃SnF

(Received, June 1st, 1966; Com. 366.)

¹ K. Jones and M. F. Lappert, Organometallic Chem. Rev., 1966, 1, 67. ² K. Jones and M. F. Lappert, Proc. Chem. Soc., 1962, 358; T. A. George, K. Jones, and M. F. Lappert, J. Chem. Soc., 1965, 2157.

³ K. Jones and M. F. Lappert, Proc. Chem. Soc., 1964, 22; J. Organometallic Chem., 1965, **3**, 295. ⁴ E. W. Abel and D. A. Armitage, J. Organometallic Chem., 1966, **5**, 326, and earlier references cited therein.

TABLE